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AE Activity: Report of WCAE-2011 Beijing:   Gongtian Shen 
  
World Conference on Acoustic Emission - 2011 Beijing was held from Aug. 24 to Aug. 26, 2011 
in Beijing, China. A total of 136 people from 19 countries attended this conference. The 
Proceedings published 88 papers*, including six keynote lectures, 44 orally presented papers and 
20 poster presentation. Business meeting were held in the afternoon of Aug. 24, 2011. 114 
delegates from 19 countries attended this meeting. A motion for establishment of the World 
Congress on Acoustic Emission, the name of which was changed later to International Society on 
Acoustic Emission (ISAE), was passed by the majority of the delegates. Allen Green (USA) was 
elected as the Honorary President of ISAE and Gongtian Shen was elected as the Interim 
President of ISAE. The constitution of ISAE is being drafted. The elected Interim Executive 
Board meeting in Aug. 26, 2011 decided that the next WCAE will be held in October, 2013, in 
Shanghai, China. 
 
 * Twelve papers from the Proc. of WCAE2011 are included in this Volume after revisions. 
 

 
Dr. Gongtian Shen, Chairman of WCAE2011, presented one of the six keynote lectures. 

 

  
Scenes from the WCAE2011 venue. 
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MODAL AE ANALYSIS OF FRACTURE AND FAILURE IN COMPOSITE 
MATERIALS, AND THE QUALITY AND LIFE OF HIGH PRESSURE 

COMPOSITE PRESSURE VESSELS 
  

MICHAEL R. GORMAN 
Digital Wave Corporation, 13760 E Arapahoe Rd, Centennial, CO 80112 

 
Abstract 
 
 The use of modal acoustic emission testing and analysis techniques to determine the quality 
of newly manufactured vessels and to detect and analyze damage in vessels that are in service 
can provide the required confidence in the safety of high pressure composite (HPC) pressure ves-
sels operated at pressures up to 103 MPa (15,000 psi).  These vessels are made of composite ma-
terials, such as carbon fibers embedded in a resin matrix, the fiber content being approximately 
60% by weight.  A practical method for distinguishing fiber break and matrix cracking events by 
a combination of energy and frequency is described and a new rolling ball impact energy calibra-
tion technique provides a method for comparing source energies with wave energies.  Back-
ground energy oscillation appears to give detailed insight into failure progression.  Fiber-bundle 
tip vibration can reveal the presence of already broken fiber bundles.  The curvatures of cumula-
tive events and energy curves quantitatively measure pressure vessel stability and are used in the 
current ASME code as accept-or-reject criteria for HPC pressure vessels.  These tools are useful 
for manufacturing acceptance, in-service testing, quality control, fatigue, stress rupture and com-
posite repair applications.   
 
1. Introduction 
 
 This work is compendium of results developed over the past twenty years on the study of 
acoustic emission (AE) in composite materials, particularly in high pressure composite pressure 
vessels fabricated with composite materials like carbon and glass fibers embedded in an epoxy or 
polyester matrix.  All of the testing described herein was performed with wideband sensors, as 
opposed to the resonant types that have been traditionally used in practical AE testing, and all 
analysis was done on the recorded waveforms.  Ever since the original discovery that plate waves 
[1] were the main practical waves to be studied in AE work on composite pressure vessels, and 
indeed metallic vessels and many other practical structures as well, all work done by this author 
has been based on the capture and analysis of wideband waveforms.  Since the publication of [1], 
many articles by different workers have been published under various titles such as plate wave 
AE [2, 3], wideband AE, waveform-based AE [4, 5], guided wave AE or wave-based AE as can 
easily be seen by doing a web search using these key words.  There are now many works pub-
lished on the subject and this subject has come to be known in the literature more and more as 
modal AE [6].  Accept-or-reject criteria of high-pressure composite (HPC) pressure vessels in 
the current ASME code for newly manufactured vessels and under consideration by NBIC (Na-
tional Board Inspection Code) for in-service vessels are based on this foundation. 
 
1.1 Acoustic Emission in Composite Materials 
Composite fracture mechanisms are manifold but consist mainly of matrix cracking, delamina-
tion between layers, fiber breakage, fiber to matrix debonding and fiber pull-out.  These are the 
sources of AE in the material.  Another very important source is friction between newly created 
fracture surfaces.   
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 An AE event is an impulse or transient wave that propagates outwardly in all directions from 
a source.  A source is a disturbance, such as a fracture or rupture in the material that gives rise to 
the transient stress wave.  Sources and waves can be modeled using elastodynamic theory.  As 
the wave propagates through a plate-like material it changes shape due to dispersion and attenua-
tion.  The wave is detected by one or more sensors coupled to the material at some distance from 
the source. The detected signal that is analyzed is called the waveform.  Since there are multiple 
fracture mechanisms in composites, the waveform produced by a given fracture mechanism must 
be distinguished from all others if the fracture mechanism is to be uniquely identified.   
 
 An AE waveform is distinguished by 1) the wave (mode) shapes, 2) the wave (mode) ener-
gies and 3) the wave (mode) frequency spectrum.  The waveforms can be calculated using elas-
todynamic theory.  Stress and strain analysis, fracture mechanics and testing of composite mate-
rials provide additional insight into how to use the elastodynamic modeling to analyze measured 
waveforms.  The waves are analyzed to determine whether the source is a delamination, small 
matrix crack event, fiber breakage event, frictional event or simply unwanted noise.   
 
 In propagating through the material AE waves behave much as any other sound waves.  They 
can reflect, refract and diffract depending on the material and structural features encountered.  
The most salient feature of waves in plates is dispersion.  Theory predicts that the different fre-
quency components travel at different speeds.  This means that the wave will change shape as it 
propagates.  The waveforms shown in Fig. 1 are examples of the by now well-known E and F 
waves, or, extensional and flexural wave modes, respectively. The change in shape, or disper-
sion, can be readily seen between channels three and channel four some distance away.   This is 
not just a reduction in amplitude, but an actual physical separation and recombination of the dif-
ferent Fourier components in the waves.  Superposition of these components creates the shape of 
the wave modes at any given point in time and space. 
 

 
 
Fig. 1.  The waveforms for an event in a composite pressure vessel.  The wave arrives first at 
channel 3.  Ordinate is volts and abscissa is time in !s. 
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1.2 Composite Pressure Vessels in Fatigue 
Composite materials consist of many types of material systems such as fiberglass/polyester, fi-
berglass/epoxy, aramid fiber/epoxy and carbon fiber/epoxy, plus hybrid systems.  The fatigue 
performance varies with the material system, structural design, ply angles or winding angles, 
laminate stacking sequence or winding pattern, cycle loads and loading pattern and so forth.  
Test specimens have survived hundreds of thousands or even millions of loading cycles.  Com-
posite materials are now used for the primary load bearing components of several military and 
civilian aircraft due to their long fatigue life and weight advantages.  Composite materials have 
been used since the 1960s for construction of high-pressure rocket motor pressure vessels.  
Composite pressure vessels in CNG service have been around for a couple of decades.  DOT ap-
proved 31 MPa (4500 psi) self-contained breathing apparatus (SCBA) cylinders made with com-
posite materials are routinely used by firemen around the world. 
 

It has been well-known and accepted since the late 1980s that there are literally thousands 
upon thousands of tiny matrix cracks in a typical composite pressure vessel after the first few 
loading cycles.  Composite failure progresses in stages.  A point is reached called matrix crack 
saturation.  From this stage onward more critical fiber breakage occurs.  Experience shows that 
pressure vessel failure is mainly due to fiber failure. 
 
1.3 Literature Discussion – High Pressure Composite Vessels and Fatigue 
There is a body of literature on AE monitoring during testing of pressure vessels going back to 
the 1970s.  Perhaps the most referred to study of HPC pressure vessels under fatigue loading is 
the work by Chiao et al. that was performed at Lawrence Livermore and published in 1978 [7].  
The fatigue tests were run at a fairly high maximum tensile stress of 91% of average burst pres-
sure.  This is very high compared to the operating pressures of ASME, DOT, and ISO pressure 
vessels where the fatigue stress ratio is normally less than 40%.  AE monitoring was applied only 
to the specimens that were pressurized quasi-statically to burst.  The 25 fatigue specimens tested 
in that program were not monitored by AE.  
 

Awerbuch et al. published in 1984 [8] perhaps the most extensive laboratory study of AE in a 
composite material used for pressure vessels undergoing fatigue loading.  In that work 96 coupon 
specimens cut from filament wound graphite/epoxy panels were tested.  One-third of the panels 
were loaded quasi-statically to failure in tension and about one-third were cycled in tension to 
progressively higher loads until failure.  The remaining one-third of the specimens were cycled 
at a fatigue ratio of 0.1 for either 5,000 cycles or 15,000 cycles.  Some details of this study are 
worth mentioning here.   
 

The specimens were examined under a 250x closed-circuit TV camera while undergoing loading.  
Damage development could be monitored in real-time along with the AE.  After cycling, the speci-
mens were loaded in tension to failure (rupture).  Some of the specimens had damage inflicted in the 
form of notches. After failure, the specimens were examined by photomicrography and scanning elec-
tron microscopy to examine the fracture surfaces.  Material from each plate, from which the speci-
mens were machined was documented before testing to get a baseline of the material before any load 
was applied.  X-ray radiographs and ultrasonic C-scans were taken of the original and tested condi-
tion.  All these different examination provided details about the failure mechanisms.   
 
During fatigue loading, the camera was focused on the edge of the specimen and matrix cracks were 
observed to initiate at the voids in the matrix.  Gradually the cracks would link the voids together.  
Transverse cracks would also appear in the 90˚ plies.  This was followed by delaminations between 
the helical plies, the 90˚ plies and the 0˚ plies.  The opening and closing of the rugged fracture sur-
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faces was easily observed to correlate with the AE.  Indeed, most of the AE was clearly due to fric-
tional rubbing of the fracture surfaces.   
 
The emission events, E, were accumulated as a function of cycle number, N, and an interesting fact 
was that the emission would suddenly jump to a new level after so many hundreds of cycles.  The 
events would then accumulate linearly for a while before another major increase would be seen.  De-
spite all of the damage that occurred during cycling, an increase in the average remaining strength 
was observed.  The specimens that were cycled 15,000 times at the highest absolute stress did show a 
slight reduction in strength of about 9%.  All cycled specimens showed an increase in compliance 
over specimens that were not cycled.   
 
Maximum fatigue load and stress had a dramatic effect on AE events.  For example, an increase of 
maximum fatigue stress from 47% to 53% changed the event sum after 5,000 cycles from around 
10,000 events to over 30,000 events for identical undamaged specimens, but there was no effect on 
strength.  One would conclude that, left undamaged by any outside influences, the fatigue capabilities 
of filament wound graphite/epoxy composite material are very good.   
 
Testing specimens in tension to failure after they had been cycled showed that AE events initiated at 
approximately 8 – 10% of the fatigue load.  This was most likely due to frictional emission and not 
new damage.  The data showed that it takes a higher load of about 120% of the fatigue load to stimu-
late emission from new damage.   
 
The specimens that had damage inflicted, in the form of double edge notches, failed at lower loads, as 
expected due to the reduced cross section remaining after notching.  AE also initiated at a lower load.  
All notched specimens failed close to the notches. 

 
 From this work we conclude that inflicted damage, not (low cycle) fatigue, is the key factor 
that will affect the strength of filament wound graphite/epoxy pressure vessels.  The stress con-
centrations created by significant damage will cause crack growth and/or fiber breaks, which re-
lease AE impulses.   
  
 Fiber breakage and matrix cracking details were discussed in [2] and [4] and in a report by 
Failure Analysis Associates to General Motors Corporation, 1997 [9].  NGV Type II vessels had 
short cuts introduced across their carbon fibers and were subsequently pressure cycled for 15,000 
cycles.  The stress concentration at the ends of the cuts led to matrix cracks (splitting) that gradu-
ally worked their way completely around the circumference.  The AE waveforms from the ma-
trix cracks were captured and stored.  Burst testing showed that the effect of the cracks on vessel 
strength was negligible.  NGV Type IV vessels were cycle tested for 15,000 cycles.  Impact 
damage had a large effect on strength reduction.  As part of this test program, a laboratory study 
of fiber tow specimens elucidated the spectra of fiber breaks and matrix cracking.  As expected 
from theoretical calculations [10], fiber breaks and matrix cracks had different frequency spectra.  
However, it was noted that the spectra can overlap and thus the spectrum alone is not sufficient 
to distinguish the two; their respective wave energies must be taken into account.  A method for 
doing this is given in this paper. 
 
 Fultineer and Mitchell [11] discussed the results of testing carbon-fiber overwrapped pres-
sure vessels that had been in service.  They proposed a specific number of AE (ringdown) counts 
as a criterion, by which to remove vessels from service.  ASTM E2191-10 for this type of vessel 
(size limited to 2.5 cubic feet of water volume) is a standard based on this.  Interestingly, the no-
tion of using the “knee” of the cumulative AE count curve is mentioned but not used; that is, it is 
not developed into a criterion for dispositioning vessels.  Using the “knee” to disposition vessels 



 5 

has been problematic.  We propose, however, that the shape of the cumulative AE event curve at 
pressure holds can be used to determine if the vessel stabilizes appropriately.  Our experience 
shows that the exponential fit to pressure hold “rollover” or curvature of the cumulative events 
curve for hundreds of identically manufactured vessels falls into a certain range of values.  This 
is not unexpected for it is essentially a measure of the relaxation time of the material under load 
and a measure of the quality and repeatability of the manufacturing process. 
 
2. Waveform Recording 
 
 The E and F waves are digitized and stored for analysis.  The recording system, including 
sensors, or, transducers, must have proper sensitivity, fidelity, signal to noise ratio and band-
width so that the E and F waves can be identified.  The equipment needed for AE testing of HPC 
pressure vessels is quite straightforward.   
 
 A typical recording system consists of  

1.  sensor 
2.  preamplifier 
3.  high-pass and low-pass filters 
4.  amplifier 
5.  A/D (analog-to-digital) converter 
6.  a computer program for the collection of data  
7.  a computer monitor for the display of data 
8.  a computer program for the analysis of data  

It is desirable that the front end of the E wave for a given event be distinguishable; i.e., that it has 
not been interfered with by superposition of another wave so much so that it cannot be clearly 
identified and used for analysis purposes.  This is called a clean front end.   
 
 There is usually some amplification applied to the signal.  Typically, for the first pressuriza-
tion of a virgin vessel, an 80-dB threshold is used so that only the higher energy events are de-
tected.  A 56-dB threshold or lower is used for subsequent pressurization and fatigue cycling. 
 
 Sensors are coupled to pressure vessels by some viscous liquid or gel; for example, silicone 
vacuum grease.  They are positioned by measuring the propagation and attenuation of waves ex-
cited by pencil-lead breaks.  The displacement of the wave motion on the surface of a vessel is 
desired, so, ideally, sensor calibration would be in volts/meter of displacement over a specified 
frequency range.  This can be done with a basic Michelson interferometer setup such as that used 
at NIST.  This also aids in making comparisons with elastodynamic calculations.  Sensor sensi-
tivity is usually in the range of about 0.1 V/nm over the range from 50 to 400 kHz.  
 
3. Fiber Breakage Events and High Frequency Components in the Frequency Spectrum 

 Fiber-bundle breakage is the most severe kind of event as far as pressure vessel strength is 
concerned.  Reasoning is given below that suggests that AE waveforms due to fiber-bundle 
breakage can be distinguished in practical testing 1) by the presence of the highest frequencies 
available in AE signals, and 2) by the shape of the frequency spectrum; that is, by the relative 
energies of various spectral ranges within the frequency spectrum.  The mode shapes are highly 
dependent on the exact material, thickness and location of the fiber breakage within the material 
but are of distinctive waveforms. 
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 Since real composites are not transparent and individual fibers are small (~10 !m diameter) 
the conjecture that fiber breaks are occurring can only be proved indirectly, but the evidence 
comes from several directions, both theoretical and experimental.  There are several pieces of 
evidence that fiber breakage is detected: 1) by elastodynamic modeling, 2) by simple physical 
considerations using typical fiber and matrix properties, 3) by the fact that the distinctive wave-
forms occur at the higher loads as predicted by statistical fiber failure (weakest link/shear lag) 
models and confirmed by experiment, 4) by the fact that the distinctive types of waveforms occur 
in great numbers at the higher loads but not at the lower load levels, 5) by the appearance of fiber 
broken end tip vibrations (more about this later) only after the fiber break waveforms appear, 6) 
by work - energy considerations based on the direct observation of fiber breaks in specially pre-
pared coupon specimens. 

 A crack may look, for example, like a displacement jump.  The jump in opening is some fi-
nite value and because of continuity the crack must begin and end in unruptured (but possibly 
stretched) material. A jump is often modeled as a step function or impulse or some other func-
tion.  Any function can be considered as a sum of Fourier components so a simple way to think 
about a crack is to think of building it out of oscillators of varying material constants and 
stretches.  In wave propagation theory, the source characteristics determine the wave frequen-
cies, while the material dictates the velocity and wavelength.  Considering a fiber as a spring, the 
oscillator force (F) can be written in length change ("L) 

F=k∆L, 

where the spring constant is k = EA/L. Taking mass m  =  ρV and V=AL,  the angular frequency 
(#) can be written 
  

Using values for glass fibers,  

    
or  f = 463/L, while epoxy values yield 
    

or f = 197/L. It can be seen that, all other things being equal, the (highest) frequency in a matrix 
crack is about half that of a glass-fiber break.  Higher frequency ratios can be expected in CFRP 
composites.  Relative frequency values similar to those calculated here are close to those found 
in experimental data.   

 Another physical approach to deciding if fiber breakage occurs in much shorter time than 
matrix ruptures is to consider the velocity of sound in the matrix versus the fiber.  Crack speeds 
can be no faster than the speed of sound and, in fact, have been found to be far less.  Theoreti-
cally, crack surfaces can be created at the Rayleigh surface wave speed.  The velocity of sound is 
much faster in fiber than matrix.  
 
 To investigate the frequency spectrum further, the elastodynamic governing equations for a 
composite plate were coded in a computer program.  Typical graphite/epoxy moduli were in-
serted and the waveforms due to different source motions were calculated.  The forcing function 
was chosen to be an impulse and impulses of varying time lengths were studied.  As expected, 
the highest frequencies were in the waveforms produced by the fastest source, confirming the 
physical reasoning above.  Notably, the calculated waveforms resembled those in experimental 
data suspected of being fiber breaks. 

ω 2 = k / m = AE / ml = AE / ρVL = E / ρL2 .

ω = 22(109 ) / 2.6(103) / L

ω = 2(109 ) /1.3(103) / L
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Next, we turn to the experimental evidence.  Hundreds of pressure vessel tests were investi-
gated over many years, including both CFRP and FRP vessels, to determine when waves with 
the highest frequencies appeared as a function of load level, or pressure.  Waveforms with the 
highest frequency components occur as the higher load levels are reached.  Importantly, the 
number of these waveforms per unit time increases (greater rates) above 80% of ultimate stress 
in agreement with statistical fiber failure theory.  Laboratory tests on impregnated fiber tows and 
on coupon specimens were carried out as well and show the same pattern as above; that is, at the 
higher load levels, waveforms containing higher frequencies begin to appear and increasingly so 
as the specimens are ramped to failure [9, 12]. 

 
Waveforms from the test of an FRP vessel are exhibited in Figs. 2 – 4.  They show the differ-

ences between matrix cracking and fiber breakage waveforms by their frequency spectra and en-
ergy differences.   
 

 
Fig. 2.  Matrix splitting waveforms in a unidirectional FRP overwrapped vessel.  The spectra for 
these waveforms (channel 3, 4, 5) are shown in Fig. 3 below.   
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 The waveforms for matrix splitting, as shown in Fig. 2, are observed frequently throughout 
tests and they can be quite energetic achieving loud audible sounds.  The cracks can be observed 
in many semi-transparent or translucent materials FRP materials. The frequencies of these very 
large energy matrix events are very low and it can be seen in Fig. 3 that they excite sound in the 
audible range below 10 kHz. 
 

 
Fig. 3.  Amplitude (linear, volts) versus frequency for channels 3, 4 and 5 on a fiberglass vessel 
showing the spectrum of the matrix cracking (splitting) occupies mainly the low frequency part 
of the spectrum below 50 kHz. 
 

 
Fig. 4.  a) Waveforms of fiber breaks on a ramp to burst at about 80% of ultimate load.  Note 
multiple breaks.  Broad spectrum uses entire range of the transducer response. 


