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Abstract 
 

In this work, a computer program is developed which allows to find and graph the phase 
velocities, group velocities and the slowness of a solid from its physical characteristics, namely 
the stiffness tensor and the volumetric density of the material that composes it. The graphs are also 
made in such a way that it is possible to obtain the magnitudes according to the angle and the 
coordinate plane of a specific propagation direction, which are given to the program as inputs.  
 
Keywords: Stress, strain, stiffness tensor, Christoffel tensor, phase velocity, group velocity, 
slowness, polarization vectors 
 
Introduction 
 
 We consider a linear behavior between stress 𝜎!" and strain 𝜖#ℓ, 
 

𝜎!" = 𝐶!"#ℓ𝜖#ℓ 
 
where 𝐶!"#ℓ	represents the elastic constants and the symmetries of the material. It can be shown 
that this so-called stiffness tensor never has 81 independent elements due to the following three 
relations of symmetry, that is, 
 

 𝐶!"#ℓ = 𝐶!"ℓ# (1) 
 𝐶!"#ℓ = 𝐶"!#ℓ (2) 
 𝐶!"#ℓ = 𝐶#ℓ!" (3) 

 
In the most complex scenario, it has 21 components. That is the case of the triclinic structures. If 
the crystal has more symmetries, the number of independent constants decreases. Isotropic crystals 
are the simplest and they only have two constants. 
 
 Newton’s second law for continuous media states 
 

𝐹! + 𝜎!"," = 𝜌	𝑢̈! 	 
 
where 𝐹!  are body forces (force per volume) which are assumed to be zero and 𝑢! is the 
displacement vector. The subscripts after the comma indicate derivatives with respect to space 
coordinates and the dots above the letters indicate derivatives with respect to time. Using the 
symmetries of the tensor 𝐶!"#ℓ the wave equation for a linear, anisotropic solid is obtained 
 

𝐶!"#ℓ𝑢#,!ℓ = 𝜌	𝑢̈! 
 
Harmonic solutions of the form  𝑢! = 𝐴&!𝑒'	)*

++⃗ ⋅.⃗/012	are proposed for this equation so the following 
one is reached:  
 

 (Γ!# − 𝜌𝛿#!𝑐3)𝐴&! = 0 (4) 
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with Γ!" the so-called Christoffel tensor, which is defined by 
 
 Γ!" = 𝐶!#"ℓ𝑙ℓ𝑙#. (5) 

 
Γ!" is a symmetric tensor, which is determined by the stiffness tensor and the directions of 
propagation (Aki and Richards, 1980, Borrelli, 2013). 
 
 We deal with a homogeneous system of three equations and three unknowns, which has non-
trivial solutions if the determinant of the matrix of coefficients that multiplies the unknowns is 
zero (Truell et al., 1969, Santaló, 1977). 
 

det(Γ!" − 𝜌𝛿"!𝑐%) = 0 
 
where 𝑐 can be found to make the equation hold. Substituting the velocities found in the system 
(4), the unknowns 𝐴&! are found. The most general case is when we have three waves as the result, 
one longitudinal P-wave, which has the greatest speed, and two transversals, called S. In some 
cases, the two S-waves may be the same. 
 
 From the velocity, other magnitudes are obtained, which have different applications. When 
studying, for example, refraction of waves between anisotropic media, velocity 𝑐 doesn’t matter 
but its reciprocal 𝑚 = 1/𝑐, called “slowness” of the wave, does matter. Its graphical representation 
on the coordinate planes allows to deduce the angles of a refracting wave, in the most general case, 
from one anisotropic medium to another. On the other hand, the velocity of a wave propagating in 
an anisotropic solid depends on the frequency of the wave. The anisotropic solid is then a 
dispersive medium, and as such, it has phase velocities and group velocities. The velocities of 
system (4) are phase velocities. Group velocities, on the other hand, are calculated as follows. 
 

 𝑔ℓ =
𝐶!#"ℓ𝛼!𝛼"𝑙#

𝜌𝑐  (6) 

 
with 𝛼! = 𝐴&!/𝐴 = 𝐴&!/2𝐴&#𝐴&# 	 the normalized polarization vector that corresponds to the 
obtained phase velocity, c (Ruzzante, 2020, Davis, 2000). 
 
Development 
 
 A web application that graphs the velocities of propagation on the coordinate planes from 
characteristics of the material was made. The corresponding URL address is 
https://www.elasticas.app/. It is worth noting that all the technologies used for developing the 
application have open-source licences. 
 
Aspect and use of the application 
When entering the URL of the program by means of any web browser, e.g.: Brave, Google 
Chrome, Mozilla Firefox, Microsoft Edge, etc., a webpage like the one shown on Figure 1 appears. 
It consists of the elements specifically listed below. 

• Input 
o 21 text fields for the components of the stiffness tensor. 
o One text field to enter the density. 
o A drop-down list to apply symmetries to the stiffness tensor. 
o Another drop-down list, for loading materials stored in the program. 

• Output 
o Values of the chosen quantities and the polarization vectors. 
o Buttons to choose the magnitude, whose results are going to be shown: phase 

velocity, group velocity, slowness. 
o Buttons to choose the coordinate plane from which results are going to be 

expressed. 
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o Text field to enter the polar angle in degrees, from which results are going to be 
expressed. 

 

 
Figure 1: Screenshot of the web application interface as soon as it’s loaded. 

 
 After loading data in some way like, for example, selecting a material from the drop-down 
list, velocity curves appear, as well as their values for the given angle, and the polarization vectors 
for that angle. In Figure 2, the results appear for the “lithium” material, the XY coordinate plane, 
and the phase velocity as the chosen quantity. The rest of the fields, corresponding to stiffness 
constants, the density and the symmetry, are filled automatically. 
 
 Values at specific angles can be seen as shown in Figure 3. To do so, the angle is entered in 
the field “Angle” and the Enter key is pressed, or a click is made in the graph to obtain an 
approximated value. 
 
 It should be noted that the angle can be swept continuously if, besides clicking in the graph, 
the button is held while the mouse is moved over it. This operation updates, also continuously, the 
values of velocity and the components of the polarization vectors. 
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Figure 2: Screenshot of the interface with the results of the lithium. 

 

 
Figure 3: Visualization of the graph and values for an angle of 30°. 
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Design decisions 
The interface was designed under two conditions. 

1. The estimation of phase velocity, group velocity, slowness and polarization vectors on the 
coordinate planes for all angles should be possible. 

2. A person with knowledge of waves in anisotropic solids should be able to use it, guided 
almost entirely by intuition. 

The first point states the necessary conditions for the design: the minimum number of elements for 
entering data and the output elements. The second condition is less objective and, consequently, 
difficult to address without ambiguities, but it determined the criteria used to add functionalities 
and make specific decisions. 

• Since C is symmetric, offering 36 text fields to fill it is a total design incompetence. The 
program interface synchronizes the lower and upper triangles automatically, as shown in 
Figure 4. Only the diagonal and the upper triangle are enabled for writing. 

• It is essential to include units next to the elements corresponding to values of physical 
quantities. It would be much less intuitive to have, for example, the text field of Figure 5, 
without indicating if the density is expressed in kg/m3, g/cm3, etc. 

• A text field triple was considered to enter a direction of propagation in space and get the 
results from it. The plot with continuous angle sweep replaced it: it clearly offers a better 
experience. 

• The colors of the plot curves correspond to the results of velocities shown. They also match 
the colors of the polarization vectors, shown as stacked rows in a matrix. Using colors is 
not the only possibility, but it is better than nothing and it is what ended up being 
implemented. 

 
 Other issues of importance for a good user experience are the practicality and the compatibility 
of the application on different systems. They are not issues primarily determined by the interface 
design, but rather by the selection of software technologies used to create the application. 
 

 
 

Figure 4: Text field in the upper triangle being synchronized with its counterpart in the lower 
triangle. 
 

 
 

Figure 5: Bad example of a text field without units. 
 
Tools 
Although developing a desktop application was initially considered, the difficulties encountered 
in testing the prototype on different computers motivated the passage to the vast, ubiquitous and 
competitive world of web applications. 
 
 The performance of desktop applications is subject to several factors like the operating 
system, the compilation method or the state of a proper runtime environment, shared libraries, and 
other dependencies in general. Instead, a web application works in any browser without the need 
to configure anything or perform additional installations. Another point that was mentioned earlier, 
without much emphasis, though it is not a minor issue, is the fact that all the tools were chosen in 
such a way that they had open-source licences. Closed-source tools are more restrictive and not 
everything that is done with them may be freely published. That limits the scopes of this work, 
since it has an intrinsically public nature. 
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 With all this in mind, it was decided to use the tools listed below. 
• The Python programming language (Python, 2022). 

o The Numpy numerical calculation module (NumPy, 2022). 
o The Flask web server module (Flask Documentation, 2022). 

• The PythonAnywhere cloud platform (PythonAnywhere, 2022). 
• HTML, CSS and Javascript for the user interface, although technically using them was not 

an option, because they are standard (Standards - W3C, 2022). 
 

 The list of technologies could be continued recursively, since every language, platform and 
module in turn depends on other modules. It only highlights that they have open-source licenses, 
too. The rest of the tools are omitted to avoid unnecessary thoroughness. 
 
Adaptation of expressions 
The Numpy numerical calculation module is optimized for matrix operations. It is therefore 
appropriate to modify the expressions, using matrix representations for their implementation in the 
software. 
 
 Equation (4) amounts to a problem that is solved by finding the eigenvalues and eigenvectors 
of the matrix of components Γ!", the Christoffel matrix, which will be denoted 𝚪. This notation 
passage is valid because the Christoffel tensor is of order two. The same does not hold for the 
stiffness tensor 𝐶!"#ℓ, which is of order four. What it does hold, thanks to the symmetry relations 
(1), (2) and (3), is the so-called “Voigt Notation”. With this notation, the pair of indices of the 𝐶!"#ℓ 
tensor are contracted to two, leading to a tensor 𝐶!". The transformation rules for each pair of 
indices are the ones that follow: 
 

11 → 1 22 → 2 33 → 3
23 → 4 13 → 5 12 → 6 

The components of the stiffness tensor 𝐶!#"ℓ can now be represented in a matrix 𝑪 as follows: 
 

𝑪 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐶%% 𝐶%& 𝐶%' 𝐶%( 𝐶%) 𝐶%*
𝐶&% 𝐶&& 𝐶&' 𝐶&( 𝐶&) 𝐶&*
𝐶'% 𝐶'& 𝐶'' 𝐶'( 𝐶') 𝐶'*
𝐶(% 𝐶(& 𝐶(' 𝐶(( 𝐶() 𝐶(*
𝐶)% 𝐶)& 𝐶)' 𝐶)( 𝐶)) 𝐶)*
𝐶*% 𝐶*& 𝐶*' 𝐶*( 𝐶*) 𝐶**⎦

⎥
⎥
⎥
⎥
⎤

 

Each element of the matrix represents more than one element of the tensor due to the symmetry 
relations (1) and (2). For example, 𝐶)( may be the representation of 𝐶%'&' as well as 𝐶%''& or 𝐶'%&'. 
On  the other hand, the components of the lower triangle are equal to the components of the upper 
triangle, i.e., the matrix 𝑪 is symmetric. 

 𝑪 = 𝑪+ (7) 
This is due to the equality (3). For example, 𝐶%'&' = 𝐶&'%' so using Voigt Notation 𝐶)( = 𝐶(). 
The same goes for the rest of the components: in general, 𝐶!#"ℓ = 𝐶"ℓ!# becomes 𝐶,- = 𝐶-, with 
Voigt Notation and it turns out that (7) is true. 
 

Voigt Notation is used in this work to replace the tensors of the equation (5) by matrix products, 
which are easier to implement in a computer program efficiently. For this purpose, the following 
matrix is defined 
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𝑳 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑙! 0 0
0 𝑙" 0
0 0 𝑙#
0 𝑙# 𝑙"
𝑙# 0 𝑙!
𝑙" 𝑙! 0⎦

⎥
⎥
⎥
⎥
⎤

 

 
and after working on the corresponding sums, each component of the Christoffel tensor is equal to 
a bilinear form with associated matrix 𝑪. For example, the explicit form of the second row and 
third column of the Christoffel tensor is 
 

Γ"# = 𝐶"!#!𝑙!𝑙! + 𝐶"!#"𝑙!𝑙" + 𝐶"!##𝑙!𝑙#
+ 𝐶""#!𝑙"𝑙! + 𝐶""#"𝑙"𝑙" + 𝐶""##𝑙"𝑙#
+ 𝐶"##!𝑙#𝑙! + 𝐶"##"𝑙#𝑙" + 𝐶"###𝑙#𝑙#

 

which using Voigt Notation and symmetries (1), (2) and (3) becomes 
 

Γ"# = 𝐶$%𝑙!𝑙! + 𝐶$&𝑙!𝑙" + 𝐶$#𝑙!𝑙#
+ 𝐶"%𝑙"𝑙! + 𝐶"&𝑙"𝑙" + 𝐶"#𝑙"𝑙#
+ 𝐶&%𝑙#𝑙! + 𝐶&&𝑙#𝑙" + 𝐶&#𝑙#𝑙#

 

then defining 

𝑳" =

⎣
⎢
⎢
⎢
⎢
⎡
0
𝑙"
0
𝑙#
0
𝑙!⎦
⎥
⎥
⎥
⎥
⎤

𝑳# =

⎣
⎢
⎢
⎢
⎢
⎡
0
0
𝑙#
𝑙"
𝑙!
0⎦
⎥
⎥
⎥
⎥
⎤

 

as the second and third column of 𝑳 respectively, the form becomes 
 

Γ"# = 𝑳"'𝑪𝑳# 

which is the bilinear form that was sought. The same is repeated for the rest of the components 
and it is finally inferred that 
 

𝚪 = 0
𝑳!'𝑪𝑳! 𝑳!'𝑪𝑳" 𝑳!'𝑪𝑳#
𝑳"'𝑪𝑳! 𝑳"'𝑪𝑳" 𝑳"'𝐶𝑳#
𝑳#'𝑪𝑳! 𝑳#'𝑪𝑳" 𝑳#'𝑪𝑳#

1 = 0
𝑳!'

𝑳"'

𝑳#'
1 [𝑪][𝑳! 𝑳" 𝑳#] 

so 
𝚪 = 𝑳'𝑪𝑳. 

 
Symmetry of 𝑪 directly implies symmetry of 𝚪 which is easy to see by using equation (7) 
 

𝚪' = (𝑳'𝑪𝑳)' = 𝑳'𝑪'(𝑳')' = 𝑳'𝑪𝑳 = 𝚪. 
On the other hand, (6) is worked out for each value of the index ℓ and, with a similar procedure as 
above, it is proven that the group velocity corresponding to the phase velocity 𝑐 is 

𝒈 =
1
𝜌𝑐
(𝒍'𝑨'𝑪𝑨)
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where 

𝒍 = #
𝑙!
𝑙"
𝑙#
% 𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! 0 0
0 𝛼" 0
0 0 𝛼#
0 𝛼# 𝛼"
𝛼# 0 𝛼!
𝛼" 𝛼! 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

 
Conclusion 

 
The developed web application can be useful for researchers that work with elastic waves and 

it is an adequate introduction to the subject for students. Initially, it was thought to include three-
dimensional diagrams to the program for their aesthetic condition, but they were leaved behind 
due to their lack of practical utility. It remains to include them as future work. Data of several 
commonly used materials was included in the application. However, the source code of the 
application is publicly accessible. Anyone can contribute with the addition of materials and other 
features as well. The main objective of this application is to be useful to community members who 
work with elastic waves. We sincerely hope that is the case. 
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